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Fig. 1

Bottom topography around Toyama Bay and the Toyama Trough with isobaths every 100 m (thin lines)

and every 500 m (thick lines). The black circles indicate hydrographic stations located along four observation

lines (A-D).
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57 ZIFIFHEIEICHEY B A~D @ 4 KOBHKR % RE
L, 2024 £ 7 H 25~27 B L8 K2 K 2R b
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HHlo (b) &2 D NHICH BiESMA (BUF, Sy
2 6B EZIBREFER LTS L vy KIEO~
2°C, ¥4y 34.0565~34.075) TH %, 4 KDAIFREIC
R ZEZ T 3D, Spa KIZIE L THEE 25.0 0, (1,
Suin KX HEE 27.28 0 fHEICH b, BRI & 2B E=
FIFEAEABNE Y, £z, Sy KOk 1.2°C,
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(a) Potential temperature-salinity (T-S) diagram showing the salinity maximum (S,,.,) range of the Tsu-

shima Warm Current Water (T=0°C—25°C and S=33.5—234.5). The red, green, blue, and black lines corre-
spond to observation lines A-D, respectively. (b) Same as (a), but for the salinity minimum (S,,,) range in the
middle layer (T=0°C—2 °C and S=34.055—34.075).
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Fig. 3 Sectional distributions of (a) salinity and (b) transmittance along four observation lines (A-D), shown in
color shades. Contours indicate densities, with thick lines representing the three isopycnals at 25, 26 and
27 0, and thin lines representing four isopycnals at 27.28, 27.30, 27.32 and 27.34 0 .
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B (ETEM) ITfR-> T B &I ICH R D, (RBEEK
PEERAE > Tof T 2 EmE, TIZLodic, THEM
L 7z Senjyu (2022) OFMKEIR L R CRETH 5.
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2.2.3. AOU (T 2REBEIE L BAFERY L DR
WK OB PSS N D L E, Rl REED
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HZEE (Apparent Oxygen Utilization ; BIF, AOU &
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Z OED 22 M A K EH CRE 2 MEIZ & »iEK)
DEEMRIEIE L 72 5,

fEH - B H (2022) ©KEFiE2 (2025) &, AOU
& PO & A L 72 %€ LAY 75 {77 & Preformed PO,
(PO,’=PO,"—AOU/138 2» it & h 3 TR A 5k
AALRIIT, ZDKIPE LT/ PO,y £7ix THEE
YIafRic & % PO, B4R E 10 PO,y Off) 25H
A EE KO Z OBIICEHTH L L2RL
7zo #C T, Fig. 5 (a) 1&H#hic AOU, fitfihic X7z
D FLEITEIEI L 72 PO4(PO,™), HkE NFITEIEH S
7= Preformed PO,(PO,") %#7u v L7, %8, Sun
KELET—HIC A Z 5 AOU—PO,° % (RkirEi) %
[E X oA HIC i RFER L7z, AOU & PO, I i3 1E
OB, & AOU TE PO L 2B H -7z, Th
FFEID S VR L CRREIARE L 7. (BBERLME S L
72) HOHEKIEE, HEMOSRPEATYS T EER
T, PO 6 PO ~EH#T 2 L, AOU ITIRTEL 2\
FIEERD PO, BHN B, Zh b, M -BEM (2022)
DR L2 & 50, REOWEERKEIRD akl & &
AR (b L QBRI o BKELIC K IG
T2, MARFERLLFERTZA S L, 1ZIFFE LT AOU
i % £ T, PO, 2MEBEMNCIZ S D KD L
TEBY, Kigxlclxanzyk L4600 %,
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Fig. 4 (a) Scatter plots of measured PO,(PO,") versus NO,+NO,, using all data. The auxiliary line indicates the
molar ratio of P:N=1:16. From the surface to a depth of 500 m, the color-coded dots alternate between red
and blue every 100 m, while data deeper than 500 m are shown in black. The green arrow roughly indicates
a depth of approximately 350 m, where S, water is present. (b) Same as (a), but for SiO, versus NO,+NO,,
with the auxiliary line showing the molar ratio of Si:N=15:16.

Fig. 5@ (b) & (c) dFERICHEIC AOU % & b, AOU Itk b wEREZ R T EEZ N D, HEEIE
K D Si0, LIEAAEY) O FDOM %2 7a vy b L7z, B D IRDOMEFTHRE SN DAY, Sy, KELFED FDOM
HBERCEEICE T 5 S0, DHARBRENELZ bR OffR/AE kL, 200mBEORBELY L L AK
Wiz (B3, 1979), S KBE®D Si0, (BALAD) 1 EREEZRLTVSE, 20&5i, BT 7HD
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(a) Same as Fig. 4(a), but showing two types of PO,. measured PO, (PO,"; closed dots) and preformed

PO, (PO,% open dots) plotted against Apparent Oxygen Utility (AOU). The enlarged AOU-PO,° area (enclosed
in green), which appears as an almost single mass at depths below S,,, water, is shown on the right-hand
side. Following Ueda and Isoda (2022), water masses of surface Tsushima Warm Current Water origin are re-

ferred to as “«

” and those of high salinity intermediate water origin as “3.” Water masses with nearly the

same AOU V31U69 but with lower PO,” are newly termed “y” water masses in this study. (b) and (c) Same as
(a), but for SiO, and FDOM versus AOU, respectively.
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Fig. 6 Same as Fig. 3, but for (a) PO,’ (shown as colored circles) and (b) DO (shown in grayscale).

Pk (0.25 umol L™' BL ),

EE/S=ANEINEVCR SR/PIN

(0.85 umol L™' DL |) &KL, AR THEET 3yK
B BOQEEONITmI L 72, £/, PO, 13 AOU %
HouTiEzsnszoT, DOERDOL VY% 191~

195 umol L™ o #ifl T A L 7z £ &, DO (Fig. 6
(b)) PO KM T 2 & 5k 5, PO, & DO
(Fig. 6) DRIRELZ AW OB M (M) ik - 72

DA% RTOICH L, Si0, £ FDOM (Fig. 7) 132 o &



10

—
Q
'

r)

Pressure (dba

(b)

Pressure (dbar)

e - BEE - USRS - P - S - DGR - B - PEAR - AR B9

123456 12345 12345 12345
0ty e e
H p—— | 40— |{0—
: \8‘sminf : WOSmin : T 'Smi“”" : h “Smin‘
] Yorore o I FaveTaYe —HO YA
500|020 0000| A0 00000) 10000,
N ol Jd-@ 10 ol 1--°%0
1% ool 1°.e0 1ge0°al 1008
1000100 e 10| 1% @ 1 a7
1@ "] de ] e /| Q0o
—1 8 1 .e° 1 @° .
19® o0/ @& | ] al |
-~ O
1500} ® O o — aps |-
| ] dﬁ | 1? ]
18 88 |1 v - -
— / — — —]
200 ¢ A1 B4 C|4 D
123456 12345 12345 12345
o—LLL L1 Il LA LT L L1l
A =08 | | =QSmy | 2O | - ZOSmax
—0 0= | 4 0——= |43
- Osg. 1 Qs | 1-Q s |19 s
_ O\ min_— 1 "O,‘_mm 1 min 1 O T
500 Q00000 —CCCCy| 400000 |-H0000A
2 1—| 70 0| Je0al0
] ol - -3 1000
1¢ 10°_ 0 120002 Jec Ay
4.0 004 1-. % 18°- _a| {°Ve]
10001 -0~ 9| 4 a2~ | 48— @ —an_
1O | e 1 1.9 /| 1902
N ol .0 1l T e
120 o00OY| 18 ] af |2
® 1280 ®
1500 © -8 a 4 1289 |5
_LH - ~® - @b —
Jb 227 |4 189 4 % i
1 e o8 | 1 & 7 -
20004 § A1 B 1 cld D

Fig. 7 Same as Fig. 6(a), but for (a) SiO, and (b) FDOM.
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T-OHELIEHR) MREL TR AT S h 5,

2.3. BREROEKREKEHBRT 3 LHTFOEE

BWEGHIBELD OB ERE S 2 0T, WAKF O R
YA XD 5 um~FFHpm (PV F~) 2HIERR L
%5, —H, BBEFHIEBOREEMET 5D T,
RIAVCH A OB TFPHIEI NS b0, EiEstL
FFOREZZOD 50, Fa »BRIEIR L ¥ L 7
EJRKOEE, EREcBMSh, BWERCHlET
Ehdol-l L5, 5 um BT OBl 2ok 1ok 7 o 2%
xhFErEZGND, TARIED (2006) O EILIERE
BRI X0, B yE CEENN (Fudl 4 &)
OIEVEERE m OKE X, Lk - k1) 32.6
~99.2%, HEFEEWEOE A E R TMEED 1.3~
13.4% ThH o 1o, WHEHFERIIDI LRV DD, KE
LERAKERUEEYEEGETETH D, ZOHIEEL
HE#EEAE2ZI CoziFhig, EriEalcbEEs B
LNBWIRRBICH B L Db B,

— /T, BELEDPoENFITENICK > UKL,
HOMIRICRE 3, KR OBUN BRIZRL T DUk % E L
e &, BUEEEvIZTROR =27 2RI ko TF
xha,

2

(0,— 0, gd
184

CZTRERI=5pum=5x10"" cm O}tk 7% H5E
L, Mito%Ep,=2.65gcm ™, #KOEEp,=
1.027 gem ™, KO KMER S =0.01 gem™'s7),
SR g=980 cm s ™% & EC/VAT 5 &, JRbEEE

N

v=2.2x10" cms '~57m/ AN E I N5, HBE
FTOBLAIDSR L EJRKOE S 1%, KR L E m Th o
72 (Fig. 3 (b)), &»oT, —EEE M- kT
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7 & AL R oK & LT D Bl 7o BHEN R E T
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1,400 m, V FRIMIEZE TV Ax=Ay=500m T&H %,
753, 100 m HEOHGEREDREE TR, BEL7 <>
BAE 2 KRB TE RV OT, WK VW ORKERIE
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Fig. 8
phasizing the Toyama Trough.
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(a) Model domain with realistic topography. (b) Model domain with a V-shaped trough topography, em-
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3, Thbb, BHOILERIGHEEDEIRE 3R,
—H ARE O 7 — L ThHNE, HThIcE LKL
IZ & BEETRN RO FSNE LEZ T, 22T, K
EEFTRFOELER O & & 2 BEE (FEE) oK
Jekz @ sk (RREORKFRR) TREL, V7t
T 7V CIIBR MR (Fig. 9 (b) ofktatd
), BSEHIEE 7L CliBE oMl (Fig. 100 0
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Fig. 9 Schematics of (a) the T-S diagram and (b) cross-sectional view of the temperature field illustrating the
initial state of the model, using a calculation example for the V-shaped trough topography. The initial density
stratification was set to a constant salinity value of 34.058, and density stratification was determined solely
by the linearly varying vertical temperature profile (0 °C at 2500 m depth and 1 °C at sea surface). The slight-
ly dense water, which forms the origin of the “vortex-mode turbidity current,” is represented by higher-salin-
ity water (shown in green shades in (a)) and was initially set in the flat topographic area at the head of the

bay (green area in (b)).
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Fig.10 Model results for the realistic-topography case. (a) Temporal variations of the instantaneous field of
relative vorticity (£/f) and velocity vectors at a depth of 1,000 m. (b) Same as (a), but for dense or high-tur-
bidity water (shown in green shades) and velocity vectors at the sea bottom.
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HITROAEL, WTT 21 oNnNTHEEE A0 BT
WTET 2DT, REICA~0 %2, ZDL, DRAMHEE
VI OE X H=500m 2 EE L CHE T 3 &, BiFEM
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Fig. 11 Same as Fig. 10, but for the V-shaped trough topography case. The internal Kelvin wave is

0 1 2 3 4(x10?

marked

“K,” while eddies with positive and negative vorticity are indicated by “e+” and “e-,” respectively.



16 HfE - B - SR - R - S

PRI~ 2 5 K EEETR (BB WK EAFICA S H
i) PRI TV S, T O AIES S B
L7, BKEMHES THEEMSER2GFICAZN S,
S5km (NEELERICEY) D% R ZNE 7 L E
YO KH) ELTERELTws, —J, FEAKDOBEEH
BERoMnb P, ZnbHE7rove vk (KH)
LT, HEABEREGTFICARYLEERT S, TON
H OV E A o BB A 1ZIF A L6 1
H, PHETZNICIEREE b ot (/<0) T
Shd, ZOMEI (e—H) 25+ 7 7 RHEEICH LS
N7REP 10 HEHTH 528, £ OREEAMNIC T Z D
W% S O IEFTE D DR (e+HI) 2o Tw 5,
MER DR T — 1%, BV EZ G FIC A RD 5
sl ~BE L 7242 (10~15 H), #iv>C, FlEmiaim
o CTHRAZICBE L T3 (156 AUK), cok
T, BOMWMEOWIT (e—HI) 2T 2 DI L
EDMEDWTE (e+H) 3O IS EEEKE M
BH5, REICHELEN TS, THIREL KD 57
WIZEZBTEA FT 5 2 L (BESOBIR) CTKIEED
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Be/FZ+05%2BATWD (BB NEKRE S
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T K EFBNCARD NI & 2% E R E T FICFEE
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3.4. ®E— NELEROHEMERE

BHR ORI O&E T2 E L BiEsEic s
WC, FFOELRIR I I RIR AN R S h 7z R o AR
PRI DI ENRENT, T OWE— FELTEFRO KB
Wi5 D SREREE 2 A 5 72012, MET Lo 30 HHIC
A U7 ClLARE C2 BT - 72 shEWTEIRT (28 1=
) % Fig. 12128 L7z, WA B 5 NEIZ K,
AS RN OB, B, WA IES T M OFE L u T
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M E DM EROEE (FEREK) TRL TS, W
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158 B K O AR R IE B VE T O A KRB S i K0E
W (Fig. 3 (b)), f&PO,° £ {% DO/ (Fig. 6) @
A & EMEICFIE L v, %72, KEOEEEKIZ,
M O R ICHE S W BRI E Oy T8
MENTWEY, ZOMNIEHEKEBEZ 7 EHFET
ML T3, ZOMERAE OO IAMINCIE, Wik
T (BRAE) omhdsrdb, T TRREIED O
o TWwd, 2L, BRAEORNIZNT L bIEE
KRN TE 56T, BEEKICX2EHEOKPEAR
(REROBR) 1ckb, MES T —IRICKR > TS,
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T IVEEIR R
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V R o Bl 5 (Fig. 12 o C2 Wii) T,
MR IR S B EK (SFEAK) o EERIAT I
fii o TS 2 R U7z, 20 H DA o Sedmimit o ol
(£ 72 IZIEOWEFER) (EFICEERNRTNCS 25 0
D, % OWIIARIEEFF 5 ORI AN % b > e EEA} i
iz ¥ ikt o Cw 3 (Fig. 11 % Fig. A2 £Ml), A6
T, VFERWEOREES % 2fE€ 571 (Fig. 13) T
ERL 72 EE, Tk RiEiiEEE Mysak et al.
(1979) 2% L 72 Trench Wave (TW) & LU TR
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EL, MEEEBEOBRE OEEE) 2EHL s
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Fig. 12 Vertical model structure of the “vortex-mode turbidity current,” obtained from cross-sections C1 (Fig.
10) and C2 (Fig. 11). In both figures, (a) temperature, (b) high-turbidity water represented by AS, (c) density,
and (d) along-trough velocity (u-component, with positive values directed into the page) are shown.

b, TW IR e LTRES NS, + 5 7D
WZih-> Cy#h, ZNICEILT 2 N T 7711 X
ZEELL, FiH x=0) 3 b5 7o (RER)
EL, x=12L 3EBEBERTH B, ko7, x<0 DFEE, I
DR, x>0 OFEIE I 2N IR L, A RIE O ¥
EAEIC S 2 HEEE— FE (£E— FnEFol

Biba, &7, xHEICRIBELZD,X)Z2H 5, v
HOIEDOHMICERET 2 (FEEMREICHES ) K
Bk, AEBw, omiEGLE2KELZEE, ETHEOD
IRIE L R, (k) & BB R R, (k) 0BT % 4 C,
B, (x) 0 AEE MDD ISR LT, &8, KiE
Wrcik, MBITREE2EZICT 50, K28
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Two-layer model
with V-shaped trough

Fig. 13 Schematic of a two-layer model with a V-shaped trough topography and the coordinate system. Quan-
tities in the upper and lower homogeneous layers are denoted by subscripts 1 and 2, respectively.

HOEIICHRTNS W EREL 72,

27V (Fig. 13) ORI WK ST A =%
%, V7RO KM (FEE 1500 m ) Xt
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6K E HHEEEa, 1%, 0 E—Fpa,=2.359, %
1 £— FHa,=5.489, %2 E— FHa,=8.638 ThH -
7zo E— Fn=0, 1, 2128 F % ok #i¥ % Fig. 14
(a), ETEORIEROWER,” % Fig. 14 (b) 1R
L, BB a VAU 52— FORBLLzw* =
w/f, WHBOIREEL TR L 7 k" =kL & L 72,
Fig. 11 0%l %2 A % &, EEEKOLHMNITIZH

2R R BR O AT 27 — v ik, SHEEL o/ 2 5
(k*~0.5) LB BEMBICAZ S, 7L, D
HEROEHRIC D, EEEKE M IE O H
¥ (SEEKOWIHEREREE) » okt <80, ik
EIHDOKFEART —Lix 2L MLk (k*<0.5) £ AZNET
HrH, B, K (Fig. 14 (a)) &5 L,
WH KT <0.5 1 IEDHDFEBIC H 2 DT, HWHDOHEI
K BMEEDRIZIEEAE R, 22T, TITRE
AWM OB LT =05 2REL LT, T 7HEKAR
DOIRIEEB®, % Fig. 14 (¢) R L, &£E—F (n=0,
1,2) 32TD,0)=1 k%5 L5 ITHBELL 7,
HiEFEBcHHE I @R (Fig. 11 % Fig. A2 /&)
OHFMIFERIRE (BRI IR D, sesfIRm (0
B 1) CIHEEEIEINICRE L Tz, Fig. 14 (c) iR
REIED, IcB W T, ZOREHE R T IRIEn=0 (K
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Fig. 14 (a) Dispersion curves w, (k) and (b) amplitude ratios R, '(k) for the trench wave (TW, n=0) and shelf
wave (SW1 and SW2, n=1,2), using parameters L=15.0 km and A;=3.2 km. (c) Amplitude function ®, (x)
across the trough for TW, SW1, and SW2 at k*=kL=0.5.

FR) DIRNTRTH D, T TW TH %, —77, n=1 (f
taRR) & n=2 (HFOFR) ORKEED, 1%, FEEI
THIZ 1ML 2HOREEEZRL, Th53E ] €—
F L8 2 £— Fod Shelf Wave (SWI1 & SW2) ¢H 5,
Fig. 14 ® (a) & (b) Ok*=05/(E%2 A B L, TW
X SW X b b CERE L, WEMidcldd 225, LB
OIRIEDS FED 8 EIREDL H 25 (R, '~0.8), HfiFhk
CTHBESINZEH (Fig. 12) 2ATH, KEERITIE
[@omEEEAK (SEEK) NichRshd, zo LEx
TP > TED, TNIIMEITREDFE LRV, iz,
WK =052 813 5 TW 0 LG $, Fig.
14 (a) &b (0.022/0.5)fL~5km/ H»E 5012,
ESE B D JeiH i E 20~30 Ho 10 HEIC# 70 km %
LTIl s, RIEHREE7km/ HEMES N,

F =S ICE TW O HERMEICEVH oD, §1.4£5
e, ZOEDQFERDO—> L LT, RO LD 5
£ 2HOBRMROFESEZ 50D (F#xB D
i & Z) o

4.2. AMERFEA & b5 7FEE L OBFR

ARIFZE DB OFAEEERIC BT, D AHEH A
R OER $F X =21, \E— FELERZ 5 & $
HEEAp, Thbb, ZNEHVWCHESNZ A —
DOWNIEBETLREA, OfETH 5, BLRIROBMEER L L
TR L7 VARG E 7L Tl ~4km, AL cil
WU 228 o @ b i © 134,=3.2km (Ap=
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Fig. 15 Same as Figs. 14 (a) and 14 (b), but comparing three TWs with A;=1.0, 3.2, and 17.0 km.
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Fig. A1 (a) Bottom topography around Toyama Bay. (b) Sea-bottom slope illustrated with light-blue dots
placed at the deepest site every 0.5 min in latitude to represent the relationship between horizontal distance
and depth. Seven points, including SO7 (mooring point shown as a red dot in (a)), were selected to show ray
paths reflecting at each site. The propagation angle is 6 =90°, i.e., southward, showing incident (red dotted
line) and reflected (red solid line) near-inertial waves (0 =1.03f). To highlight the asymmetry of meridional
southward propagation, westward propagation (6=0°) is also illustrated for the outermost offshore point.
Figures adapted from Echigo et al. (2023, Fig. 8; in Japanese).
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Fig. A2 Same as the instantaneous field of relative vorticity £/f and velocity vectors at a depth of 1,000 m in
Fig. 11, but for (a) an idealized V-shaped trough topography and (b) a linearly deepening topography.
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Vortex-mode turbidity current trapped in the Toyama Trough

Hina Takahashi' ", Yutaka Isoda', Takeshi Yoshimura®, Satoshi Nakada®,
Keiri Imai*, Kenji Oguma®, Takehiro Takatsuki', Yuuta Nishimori',
Minori Naka® and Natsumi Kikuiri®

Abstract

The spatial distribution of high-turbidity water near the sea bottom, inferred from low transmit-
tance, low dissolved oxygen, and low preformed PO,, was investigated through hydrographic
observations of four vertical sections across the Toyama Trough. Water masses appearing to be
high-turbidity water (resuspension of fine clay particles smaller than 5 pm) originating from the
head of Toyama Bay were distributed unevenly along the trough slope on the Sado side. Numer-
ical experiments were conducted with an initial setting of slightly dense water in the bottom lay-
er of the bayhead, assuming the mixing of seawater with very fine seabed mud. This dense wa-
ter, accompanied by turbid water, moved slowly offshore and downward along the trough slope
on the Sado side, maintaining the shape of a weak counterclockwise horizontal eddy flow. The
flow field of this eddy, although bottom-trapped, extended upward beyond the turbid water. In
this study, such a counterclockwise flow is referred to as the “vortex-mode turbidity current,”
which is distinct from a strong “sediment gravity current” that triggers submarine landslides.
However, the density of the turbid water responsible for this weak current remains unknown
and is practically impossible to observe. Therefore, an analytical solution for vortex-mode waves
that can exist in a V-shaped trough topography approximated by two layers, i.e., the Trench
Wave (TW), was derived. The results indicate that when the baroclinic Rossby radius calculated
from a density difference is significantly smaller than the trough slope width, the motion of the
lower and upper layers of the TW becomes nearly equal, thereby weakening the property of
bottom intensified flow.

Key words: Toyama Trough, hydrographic observation, numerical experiments,
vortex-mode turbidity current, Trench Wave
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