— 総 説 —

気候変動が水産資源の変動に与える影響を 理解する上での問題点と今後の展望*

伊藤 進一¹**・船本 鉄一郎²・志田 修³・上村 泰洋⁴・髙橋 素光⁵・白井 厚太朗¹・ 樋口 富彦¹・小松 幸生¹・横井 孝暁¹・坂本 達也¹・郭 晨颖¹・石村 豊穂⁶

要 旨

気候変動が水産資源の変動に与える影響を理解するために、これまで様々な研究が行わ れてきた。しかし、水産資源生物の生残にとって最も重要と考えられる仔稚魚期に、水産 資源生物が実際に経験した環境を観測できないことが、1つの問題となってきた。本稿で は、これまで行われてきた研究の概要をまとめるとともに、気候変動に対する水産資源の 応答を調べる方法として、仔稚魚の耳石日周輪幅による成長履歴の推定、耳石酸素安定同 位体比分析および魚類成長-回遊モデルの融合による経験環境と回遊経路の推定を組み合 わせた新たな解析方法を提案する。

キーワード:耳石酸素安定同位体、水産資源変動、魚類成長-回遊モデル、経験環境推定

- * 2016年11月10日受領;2017年5月13日受理 著作権:日本海洋学会,2018
- 東京大学 大気海洋研究所 〒 277-8564 千葉県柏市柏の葉 5-1-5
- 2 国立研究開発法人水産研究・教育機構 北海道区水産研究所 〒085-0802 北海道釧路市桂恋 116
- 3 地方独立行政法人北海道立総合研究機構中央水産試験場 〒046-8555 北海道余市郡余市町浜中町238
- 4 国立研究開発法人水産研究・教育機構中央水産研究所 〒236−8648 神奈川県横浜市金沢区福浦2-12-4
- 5 国立研究開発法人水産研究・教育機構 西海区水産研究所 〒851-2213 長崎県長崎市多以良町1551-8
- 6 独立行政法人国立高等専門学校機構 茨城工業高等専門学校 〒 312-8508 茨城県ひたちなか市中根 866
- ** 連絡著者:伊藤 進一 TEL:04-7136-6240 FAX:04-7136-6247 e-mail:goito@aori.u-tokyo.ac.jp

1. はじめに

地球表面積の約7割を覆っている海洋が果たす生態系 サービスの一つに食料供給がある。国際連合食糧農業機 関(Food and Agriculture Organization: FAO)の報告 書によると、年間1人当たり約19.2 kgの水産物を摂取し ており、このうちの約66%が海洋から供給されている (FAO, 2014)。海洋における水産物の生産のうち、約76 %が漁獲漁業による生産(残りは海面養殖)であり、海洋 生態系が人類に与える生態系サービスは非常に大きい (FAO, 2014)。このようななか、北西太平洋は、FAOの 海域区分では世界の海洋の6%の面積にしか満たないが、 全世界の海面漁獲の約27%に当たる海面漁獲があり (FAO, 2014)、生産性が世界で最も高い海域となってい る(Fig.1)。

しかし、北西太平洋の多獲性魚類である小型浮魚類

Fig. 1. Marine capture in major fishing areas. Data source: FAO (2014).

は、太平洋十年規模変動(Pacific Decadal Oscillation: PDO)やPDO index の符号変換を伴う大気-海洋-生 態系の基本構造の転換であるレジーム・シフト(Kawasaki, 1983)と対応した魚種交替(例えば, Takasuka *et al.*, 2008, Fig. 2)を示し,各魚種でみると35~50年程度の 周期で漁獲が変化する。PDO に対応して、北太平洋の西 部および中央部と東部で海表面水温偏差が逆符号を示し ながら10年規模で符号を変化させることが知られている (Mantua *et al.*, 1997)。また、PDO やレジーム・シフト に対応して動物プランクトンの現存量も大きく変動する。 例えば1970年代中盤のレジーム・シフトを境に、動物プ ランクトン現存量が、春季の黒潮域(Chiba *et al*, 2008) やアラスカ湾で増加した (Brodeur and Ware, 1992)の に対し、冬季の親潮域 (Chiba *et al*, 2008) やカリフォル ニア海流域では減少した (Roemmich and McGowan, 1995)ことが知られている。これらの影響を受け、魚種 交替などが起きていると考えられている。一方、底魚類 の変動としては、スケトウダラの産卵場への来遊時期の 変動が約20年で変動しており (Shida *et al.*, 2014), PDOもしくは千島列島沿いに顕著に現れる潮汐18.6年 振動 (Osafune and Yasuda, 2006)などの環境影響に応 答して変動している可能性がある。ここでは北太平洋の 例を示したが、北大西洋振動 (North Atlantic Oscillation: NAO)、大西洋数十年規模変動 (Atlantic Multi-

Fig. 2. (a) Pacific Decadal Oscillation (PDO) index and (b) fish catch fluctuation from the beginning of the 20th century to the beginning of the 21st century. From Takasuka *et al.* (2008).

decadal Oscillation: AMO), 北極振動(Arctic Oscillation: AO), 南極振動(Antarctic Oscillation: AAO)や それらに付随するレジーム・シフトに対応した10年から 数10年スケールの魚種交替は世界の様々な海域で起き ている。地球温暖化をはじめとする気候変化や気候変動 が進行する中で,これらの水産資源の地球環境への応答 は,地球規模の食糧問題につながる。このため,潮汐 18.6年振動や地球規模の気候変動に伴う環境変動に対 し,どのようなメカニズムを通して,水産資源が応答し てきたかを明らかにすることが重要である。

本総説では、気候変動が水産資源の変動に与える影響 を理解するために、これまでに行われてきた様々な研究 を第2節で紹介し、問題点を整理する。第3節で、その 問題点を克服する研究方法を提案し、第4節でマサバ太 平洋系群を例にその有効性と期待について記述し、第5 節で今後の研究の方向性について考察する。

2. これまでの研究

水産資源変動の基本的な考え方として、"Growth-mortality" hypothesis (Anderson, 1988) がある。これは、生

残率(1から死亡率を差し引いたもの)は成長率の関数に なっているという仮説であり、大別すると以下の3つの 考えに要約される。1) "Bigger is better" (Miller et al., 1988):体長が大きいことにより捕食者となる魚種が減少 し, 有利となる。2) "Stage duration" (Chambers and Leggett, 1987; Houde, 1987): 仔魚期の脆弱な時期を早 く切り抜けることにより生残率が向上する。3) "Growthselective predation"(Takasuka et al., 2003):健康状態 の悪い個体から優先的に捕食されるため、状態がよく高 い成長率を示している個体の方が有利となる。上記の3 つの考えは似ているようにみえるが、生残率が本来、体 長, 仔魚期間, 成長率 (仔魚の健康状態) のうちのどれ によって決定されているかという点で異なっている。し かし、結果的に出てくる生残率は、3つのどの場合におい ても,見かけ上は成長率の関数になっている。つまり, 仔稚魚期の成長が鍵となることにかわりはない。

気候変動と水産資源変動の関係を調べる場合によくと られてきた方法として、生残率と環境要素との相関やラ グ相関を計算する相関解析がある。環境要素との相関係 数の地理的な分布も把握できるため、この方法は大規模 な気候変動との対応を調べる上で有効な手段である。例 えば、北西太平洋で最も資源変動の振幅が大きいマイワ シについて、黒潮続流南方海域の海表面水温と生残率が 負相関 (Fig. 3), すなわち黒潮続流南方海域の海表面水 温が低いときに、生残率が向上することが示されている (Noto and Yasuda, 1999)。しかし、マイワシ仔魚が分 布するのは、主に黒潮続流以北の海域であり、相関解析 は必ずしも直接的な関係を示すものではないという欠点 もある。後に、Nishikawa and Yasuda (2008), Nishikawa et al. (2011), Nishikawa et al. (2013) は、黒潮続流 南方海域の海表面水温が高いときには、産卵場から黒潮 続流に至る黒潮の流量が増大し、水平熱輸送量が増大す ることで冬季混合層を浅化させ栄養塩の表層への取り込 みが減少する結果、仔稚魚の輸送経路上での春季植物プ ランクトンのブルームを弱化させ、餌供給の低下を通じ てマイワシの低生残につながることを示唆している。

より直接的に,環境と仔魚の成長速度を比較する方法 としては,耳石の日周輪の間隔から仔魚の成長速度を推 定して利用する方法がある。耳石とは,硬骨魚類の内耳 にある炭酸カルシウムの結晶からなる組織で,一度結晶

Fig. 3. Correlation maps between survival rate of Japanese sardine (*Sardinops melanostictus*) and sea surface temperature in (a) March and (b) April. From Noto and Yasuda (1999).

化すると代謝されないため,個体が経験した環境履歴が 経時的に保存されているという特徴を持つ。多くの魚類 では,耳石に日周輪を形成することが飼育実験によって 確かめられている。したがって,耳石日周輪をすべて読 むことができれば,採取日から逆算することで,孵化日 を推定することができる。また,耳石日周輪の間隔の積 算値(耳石半径に相当)と尾叉長(または標準体長)との 関係から,耳石日周輪間隔が成長を反映する指標である ことが,多くの魚種で確かめられている。

北西太平洋のマイワシとカタクチイワシを対象とした 研究では,採取した仔魚の縁辺部の耳石日周輪の間隔 (採取直前の成長に相当)を採取した地点での海表面水温 と比較した例がある (Fig. 4; Takasuka *et al.*, 2007)。こ の結果によると,カタクチイワシは 22.0 ℃で成長が最大 となるのに対し,マイワシはより低温の 16.2 ℃で成長が 最大になる。このことは,水温が,直接,仔魚の成長を 制御し,魚種交替を引き起こしている可能性を示してい る。

また, Takahashi *et al.* (2009)は、水温だけでなく, 餌料環境とマイワシ・カタクチイワシの後期仔魚・前期 稚魚の成長との関係を調べ、両種の成長率は好適水温範 囲において餌料密度の関数で表されるが、マイワシの方

Fig. 4. Growth rates of Japanese sardine (*Sardinops melanostictus*, open circles) and Japanese anchovy (*Engraulis japonicas*, closed circles) as a function of sea surface temperature. From Takasuka *et al.* (2007).

がカタクチイワシよりも多くの餌が必要で餌との関係性 が高かったことを報告している (Fig. 5)。このように, 耳石から推定した過去の成長率を用いることで,環境因 子との関係を調べることができる。

Fig. 5. Growth rate of Japanese sardine (*Sardinops melanostictus*) as a function of (a) sea surface temperature and (b) prey density. (c) and (d) are respectively same as (a) and (b) except for Japanese anchovy (*Engraulis japonicas*). From Takahashi *et al.* (2009).

しかし,耳石の日周輪の間隔から,孵化日まで遡った 成長履歴が推定可能であるにもかかわらず,対応して議 論できる環境因子は採取時のものに限定されてしまう。 孵化日から採取日までの仔稚魚の経験環境は不明であり, 仔稚魚がどのような海域を輸送されてきたかもわからな いため,環境データセットから経験環境を正確に推定す ることもできない。つまり,これまでは,仔稚魚が経験 している実際の環境の履歴が不明なまま,水産資源変動 を議論せざるを得なかったのである。このように水産資 源変動の鍵となる仔稚魚期の経験環境を得ることができ ないことが,これまで,気候変動が水産資源の変動に与 える影響を理解する上で1つの問題となっていた。

3. 水産資源変動研究の突破口

魚類が仔稚魚期に経験した環境履歴が不明であったた め、水産資源変動の鍵となる仔稚魚期の成長率に環境が どのような影響を与えているのかを調べることは限定的 になっていた(採取直前の成長と採取時の環境のみが可 能であった)。気候変動と水産資源変動の関係を調べる 上で、仔稚魚期の環境履歴がわかれば、耳石から推定し た孵化日からの成長率と直接比較ができ、どの時期の環 境が水産資源変動にとって重要なのか解析が可能とな る。

仔稚魚期の経験環境の推定を行う方法として、近年新 たな技術が導入されている。1つは超高解像度海洋大循 環モデルの導入である。数値モデルを用いた卵稚仔の輸 送経路の推定に関する研究は、数10年にわたる歴史を 持つが、近年の急速な計算機速度の向上によって、超高 解像度の計算が可能となっている。2002年に始動した地 球シミュレータによって超高解像度海洋大循環モデルと して OGCM for the Earth Simulator (OFES) による過 去再現実験が可能となった (Sasaki et al., 2008)。Itoh et al. (2009)は、この過去再現実験から得られた流速場・ 水温場を用いて、マイワシおよびカタクチイワシの経験 環境の再現を試みている。OFES は黒潮流路が離岸傾向 を示す問題点を含むが、流軸に相対的な位置を観測とモ デルで一致するように卵を配置することで、産卵場の分 布水温の長期的な変動傾向の再現に成功している (Fig. 6)。近年では、衛星、船舶、アルゴフロートなどによる 様々な観測値を海洋大循環モデルに同化することによっ

て,より現実的な流速場と水温場を得ることができる。 これらデータ同化モデルの出力を用いた卵稚仔の経験環 境の再現も試みられており,急速な発展を遂げている。

しかしながら、超高解像度海洋大循環モデルやデータ 同化モデルの出力を用いた計算を行っても、輸送経路の 計算結果と、その輸送経路によって決まる経験環境を検 証するためのデータが存在しない、という大きな問題が 残されている。魚類の回遊経路を調べる手法としては、 標識放流ー再捕が古くから行われてきた。近年では、 アーカイバルタグやポップアップタグなどの登場により、 標識に光・水温・圧力などのセンサーを搭載することが 可能となり、日出・日没の時刻から経度を、日長および 水温から緯度を推定することができるようになってきた。 例えば、Kitagawa *et al.* (2009)は、日本から北米までの クロマグロの回遊経路を推定している(Fig. 7)。アーカ イバルタグ等の小型化によって多くの魚種への装着が可 能となってきているが、小型魚や仔稚魚への実装は未だ

Fig. 6. Interannual variations in weighted mean surface temperatures, observed and under initial model conditions, for (a) anchovy and (b) sardine. From Itoh *et al.* (2009).

Fig. 7. (a) Estimated migration routes, (b) ambient surface temperature, and (c) daily travel distance of an archival-tagged bluefin tuna (*Thunnus orientalis*). From Kitagawa *et al.* (2009).

困難である。したがって,アーカイバルタグを用いて, 水産資源変動にとって重要な仔稚魚期の経験環境を計測 するのは,現状では不可能である。

もう1つの新しい技術は、耳石の高精度化学・同位体 分析である。前述した通り、耳石は代謝されないため、 環境情報を経時的に保持している。したがって耳石の組 織を超高解像度で分析できれば、仔稚魚期の経験環境を 推定することが可能となる。そこで注目されるのが耳石 の酸素安定同位体比である。耳石の酸素安定同位体比を 用いた経験環境の推定そのものは Devereux (1967)をは じめ長い歴史を持つ。近年の分析技術の向上によって、 少量の試料を用いた分析が可能となり、耳石に記録され た情報を高時間解像度で解読することが可能となってき た。無機アラゴナイト形成時の酸素安定同位体比は,現 場海水の酸素安定同位体比と水温に依存する(Kim et al., 2007)。多くの魚種において,耳石の酸素安定同位体 比も,無機アラゴナイトの形成時にみられる水の酸素安 定同位体比-水温関係性と相似した依存性を示す。つま り耳石のアラゴナイトは,同位体平衡下で形成されると 考えられる(Kitagawa et al., 2013; Fig. 8)。したがっ て,現場海水の酸素安定同位体比の情報を耳石酸素安定 同位体比から差し引くことで経験水温履歴を推定するこ とができる。なお,耳石の化学・同位体比分析による魚 類回遊生態の推定手法については Amano et al. (2015),

Fig. 8. Stable isotope fractionation relationships for inorganic aragonite (E, G) and fish species (others). From Kitagawa *et al.* (2013).

横内ら (2017) およびその引用文献に詳しいので参考に されたい。

仔稚魚の経験水温履歴を耳石酸素安定同位体比から推 定するためには、1)耳石日周輪と平行に試料の削り出し ができる、2)削り出した微量の試料で高精度の酸素安定 同位体比分析ができる、という2つの条件を満たさなけ ればならない。1)については、高精度マイクロミルが開 発され、カメラ画像から得た耳石日周輪の座標に沿って 数10µm単位で耳石を切削することが可能となってい る。2)については、安定同位体比質量分析計の精度向上 や分析技術の革新によって、数10µg程度でのルーティ ン分析が可能となっている。さらに高度に最適化した手 法を用いることで、0.2µgでの分析も可能となってきた (Ishimura *et al.*, 2008)。これらの技術革新によって、こ れまでにない時間解像度で耳石から経験環境の推定が可 能となってきており、実際にマイワシの耳石酸素安定同 位体を用いた経験環境推定の試みもおこなわれている (Sakamoto, 2016)。

ただし、この方法を使用する場合には、以下に述べる 注意が必要である。まず、体温が海水より高い大型魚で は、体温の影響を受けるため、耳石酸素安定同位体を経 験水温の推定には使用できないという制約がある。逆に, 小型浮魚類や仔稚魚では、体温と水温はほぼ同じと仮定 することができるため、現場海水の酸素安定同位体比が わかれば、経験水温の推定が可能である。現場海水の酸 素安定同位体比は、蒸発や降水の際に発生する同位体分 別に大きく影響される。このため、海域毎に区切ると、 現場海水の酸素安定同位体比と現場塩分との間に良い正 相関がみられる (Legrande and Schmidt, 2006)。つま り, 仔稚魚が高塩分かつ低水温な環境を経験するほど, 耳石の酸素安定同位体比が高くなる。一方で、日本周辺 海域では、南に高温・高塩な黒潮が、北に低温・低塩な 親潮が存在する。太平洋側の日本周辺海域では、両者の 海水特性を持つ源流水が混合しているため、水温・塩分 は両源流水の間に存在する。このため、南北での現場環 境差によって耳石に現れる酸素安定同位体比の違いは、 水温と塩分の効果が相殺するため、弱くなる傾向にある (Fig. 9)。これは、太平洋側だけなく、日本周辺海域全 体で共通の問題である。また、日本周辺海域では、水 温、塩分とも東西傾度が弱く、東西に比較的一様な分布 を示すため、耳石酸素安定同位体比から推定される存在 範囲も東西方向に広がる傾向にある。したがって,耳石 酸素安定同位体比だけからでは,輸送(もしくは遊泳)経 路を特定するのは困難であり,結果的に水温以外の経験 環境(餌料環境など)を推定することができない。

そこで考えられるのが,前述の超高解像度海洋大循環 モデルやデータ同化モデルとの併用である。これまで, 海洋大循環モデルを用いた卵仔稚の輸送実験では,物理

Fig. 9. Expected otolith δ^{18} O values plotted on a T-S diagram. Red and blue lines show respectively the T-S profiles of Kuroshio and Oyashio pure waters. Dashed contour lines denote isopycnals. Color tones with solid lines denote expected δ^{18} O values in fish otoliths calculated from the aragonite-water fractionation equation [1000 ln α (aragonite-water) = 17.88 (1000/T_k) – 31.44, where α (aragonite-water) is (δ^{18} O aragonite + 1000)/(δ^{18} O water + 1000), and T_k is temperature in K] reported by Kim *et al.* (2007) and a salinity-water δ^{18} O relationship (δ^{18} O water = 0.44 salinity – 15.13) empirically determined from water in the western North Pacific by Sakamoto (2016).

Fig. 10. Schematic view of a combination of otolith δ^{18} O information and a fish growth and migration model. Broken line shows the migration route estimated by the model, and solid line shows the migration route corrected with otolith δ^{18} O information.

場が超高解像度化やデータ同化などによって現実的に なっても、計算結果を検証するデータがなかった。しか し、耳石の酸素安定同位体比を検証データとして用いる ことで、輸送実験の結果を検証することができる。また、 近年では、超高解像度海洋大循環モデルに低次栄養段階 生態系モデルが結合され、餌料環境も計算することがで きるようになった(例えば、Sumata *et al.*, 2010)。さら に、低次栄養段階生態系モデルによって計算される餌料 プランクトンを摂餌する魚類の成長一回遊モデルの結合 も行われている(Ito *et al.*, 2004; 2007; 2013; 2015)。こ のようなモデルを使用すれば、稚魚期の回遊の影響も陽 に組み込むことが可能となる。これらの魚類成長一回遊 モデルと耳石酸素安定同位体比を組み合わせることで、 これまで不可能であった仔稚魚期の経験環境と輸送経路 の推定が可能になることが期待される(Fig. 10)。

この際に重要となるのが,耳石に透明帯が形成される 前の仔稚魚期の試料を確保することである。魚類の耳石 では,冬季の成長の停滞期に,透明帯が形成され,日周 輪の識別が困難となる。透明帯が形成されると,孵化日 の推定が不可能となり,数値モデルと組み合わせる場合 の初期設定が不明となる。前述した通り,基本的には仔 稚魚期の生残が資源変動にとって重要であると考えられ ている。このため,仔稚魚期の耳石試料を採取し,日周 輪解析による成長履歴の推定,酸素安定同位体比分析お よび数値モデルによる経験環境と輸送(あるいは回遊)経 路の推定を行うことが重要である。

4. マサバを例に

本節では、マサバを例にとって、耳石酸素安定同位体 比が資源変動研究に、どのように役立つのかを考える。 マサバ太平洋系群は、1980年代後半以降、加入量が低い ままであるが、数年に一度、卓越年級群が発生している。 Kamimura et al. (2015)は、2002~2011年の5~6月に 黒潮続流の北側にあたる混合水域で採取したマサバ仔稚 魚の耳石日周輪解析から、孵化日と成長率を推定してい る。推定された孵化日は、3月20日から5月7日で、年 によって孵化日の中心は変動していたが、すべての年で 共通して4月孵化の試料が採取されていた。孵化日の影 響を取り除くために、4月生まれの仔稚魚に注目して解析 を行うと、成長の良い年には加入量および加入率が高い ことが示された(Fig. 11)。また、耳石日周輪解析から仔 魚期の期間を推定し、加入量と比較すると、有意な負の 相関関係 (r = -0.86, p < 0.001, n = 10)を得ることが できた。つまり、マサバ太平洋系群では、仔魚期の成長 がよく、仔魚期間が短いときに、加入がよくなるという "Stage duration" 仮説 (Chambers and Leggett, 1987; Houde, 1987)が成り立っている可能性が示された。ま た、マサバが仔魚期に通過していると推測される房総半 島沖の4~5月の海表面水温と成長との関係を調べると、 有意な正の相関関係 (r = 0.63, p < 0.05, n = 10)が得

Fig. 11. (a) Recruitment as a function of mean daily growth rate of chub mackerel (*Scomber japonicus*) in larval and juvenile stages hatched in April of 2002 to 2011. (b): same as (a) except recruitment per spawning stock biomass (RPS). From Kamimura *et al.* (2015).

られた (Kamimura *et al.*, 2015)。

この結果からは、高水温が仔魚の高成長をもたらして いることが推測される。この仮説が正しいことを裏付け るためには、Kamimura et al. (2015) で解析している混 合水域で採取された4月生まれのマサバ仔魚が、房総沖 を、毎年4~5月に通過していることを証明する必要が ある。さらには、正確なマサバ仔魚の輸送経路を推定し、 輸送経路上の経験水温および餌料環境を得ることができ れば、水温による直接的な影響なのか、非直接的もしく は餌料環境も含めた複合的な影響なのかを調べることが 可能となる。Kamimura et al. (2015) で用いている耳石 試料の酸素安定同位体分析が進み、同時にマサバの成長 -回遊モデルが構築され、両者から、マサバの経験水温 と回遊経路を推定し、その経路上における餌料環境を推 定することができれば、マサバ太平洋系群の加入量変動 のメカニズムの核心に追ることができる。

5. 考察

ここまで、気候変動に対する水産資源の応答を明らか にするうえで、1つの問題点であった仔稚魚期の経験環境 の推定を可能とする方法について述べてきた。採取した 仔稚魚の耳石試料の日周輪幅から孵化日および成長履歴 を、そして耳石の酸素安定同位体比分析から経験した水 温および海水酸素安定同位体比を推定し、孵化日に初期 値を仮定した魚類成長-回遊モデルによる成長履歴と経 験環境が推定した結果と一致するようにモデルパラメー タを調整することで、回遊経路を推定することができる。 回遊経路が決定することで、経験した水温に加え、回遊 経路上における餌料環境も推定できるため、これまで問 題となっていた仔稚魚の経験環境と成長の関係に関する 知見を大きく改善すると考えられる。

今後,気候変動に対する水産資源の応答を明らかにす るうえで,対象魚種の特性にあわせ適切な仔稚魚の採取 を実施し,時空間解像度の向上などに努めることが重要 である。これに加え,既に起きた気候変動に対する水産 資源の応答を調べるため,過去の耳石の分析も必要であ る。耳石試料をアーカイブしている国内の研究機関にお いて,過去のPDO や潮汐 18.6 年振動などの各位相に対 応した耳石試料の発掘ができれば,これらの長期変動に

対する水産資源の応答を調べることができる。

海洋環境変動と魚類の成長・回遊との関係を調べる魚 類成長-回遊モデルとして, NEMURO.FISH (North Pacific Ecosystem Molel for Understanding Regional Oceanography. For Including Saury and Herring; Ito et al., 2004) が、プランクトン食性小型浮魚類を対象に開 発されてきた。NEMURO.FISH の最大の難点は、回遊モ デルの直接検証ができないという点であったが、今回提 示した耳石酸素安定同位体比との融合で、モデル検証も 実現できる。NEMURO.FISH の中で餌料プランクトンを 計算している低次栄養段階生態系モデル NEMURO (Kishi et al., 2007) では、PDO に対応した動物プランクト ンの変動も再現されており (Aita et al., 2007), PDO や 潮汐18.6年振動などの長期変動を含めたモデリングとそ の解析は可能であると判断される。したがって、過去の 耳石の酸素安定同位体比との融合も視野に入れることが できる。

NEMURO.FISH は、サンマとニシンを対象に開発され たが、プランクトン捕食者であれば応用が可能で、マイ ワシ(Okunishi *et al.*, 2009)、サケ(亀澤ほか, 2007)、 スルメイカ(Kishi *et al.*, 2009)、ヨーロッパカタクチイワ シ(Politikos *et al.*, 2011)、カタクチイワシ(Wang *et al.*, 2013)などに応用されてきた。しかし、日本周辺の多獲 性魚類であるスケトウダラ、マサバ、マアジなどについ ては、これらのプランクトン食性が特化されていないた めに、NEMURO.FISH が適用されてこなかった。これら の魚種にも NEMURO.FISH を適用する場合には、餌料 魚種の生産も含めたモデルに発展させる必要がある。

また、耳石の酸素安定同位体比とNEMURO.FISHの 計算結果を比較する場合に、NEMURO.FISHで仮定する 回遊様式も重要となってくる。これまで様々な回遊アル ゴリズムが提案されており、NEMURO.FISHを用いて、 その回遊アルゴリズムの比較も行われている(Okunishi et al.,2012)。実際のところは、回遊メカニズムに関する 情報が欠落しており、どのアルゴリズムが対象魚種に適 しているのかは、計算結果からしか判断できない部分が ある。今後は、行動学的な室内実験や遺伝的発現と回遊 の関係解析などを進め、回遊メカニズムを解明していく ことも重要である。

最後に,筆頭著者である伊藤進一が本論文の作成を担

当し,船本・志田は底魚類の資源変動に関する研究のと りまとめを担当し,上村・高橋・郭は浮魚類の資源変動 に関する研究のとりまとめを担当した。白井・樋口・石村・ 坂本は耳石酸素安定同位体分析に関する研究のとりまと めを担当し,小松・横井は海洋循環モデルも組み合わせ た研究のとりまとめを担当したことを付記する。

謝 辞

本研究は、文部科学省・科学研究費補助金 新学術領 域研究「海洋混合学の創設:物質循環・気候・生態系の 維持と長周期変動の解明」の計画班「水産生物の環境履 歴と水産資源変動」(科研費 JP15H05823)の助成を受け たものである。

References

- Amano, Y., J. C. Shiao, T. Ishimura, K. Yokouchi, and K. Shirai (2015): Otolith geochemical analysis for stock discrimination and migratory ecology of tunas, p. 225–260. In *Biology and ecology of Bluefin tuna*, edited by T. Kitagawa and S. Kimura, CRC Press, Boca Raton, London and New York.
- Aita, M. N., Y. Yamanaka, and M. J. Kishi (2007): Interdecadal variation of the lower trophic ecosystem in the northern Pacific between 1948 and 2002, in a 3-D implementation of the NEMURO model. *Ecol. Model.*, 202, 81–94.
- Anderson, J. T. (1988): A review of size dependent survival during prerecruit stages of fishes in relation to recruitment. J. North-wst Atl. Fish. Sci., 8, 55-66.
- Brodeur, R. D., and D. M. Ware (1992): Interannual and interdecadal changes in zooplankton biomass in the subarctic Pacific Ocean. *Fish. Oceanogr.*, 1, 32–38.
- Chambers, R. C., and W. C. Leggett (1987): Size and age at metamorphosis in marine fishes: an analysis of laboratory-reared winter flounder (*Pseudopleuronectes americanus*) with a review of variation in other species. *Can. J. Fish. Aquat. Sci.*, 44, 1936–1947.
- Chiba, S., M. N. Aita, K. Tadokoro, T. Saino, H. Sugisaki, and K. Nakata (2008): From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific. *Prog. Oceanogr.*, 77, 112–126.
- Devereux, I. (1967): Temperature measurements from oxygen isotope ratios of fish otolith. *Science*, **155**, 1684–1685.
- FAO (2014): *The State of World Fisheries and Aquaculture 2014.* Rome, 223 pp.
- Houde, E. D. (1987): Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp., 2, 17–29.
- Ishimura, T., U. Tsunogai, and F. Nakagawa (2008): Grain-scale hetero-

geneity of the stable carbon and oxygen isotopic compositions in international standard calcite materials (NBS19, NBS18, IAEA-CO-1, and IAEA-CO-8). *Rapid Comm. Mass Spectr.*, **22**, 1925–1932.

- Ito, S., M. J. Kishi, Y. Kurita, Y. Oozeki, Y. Yamanaka, B. A. Megrey, and F. E. Werner (2004): Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. *Fish. Oceanogr.*, 13, Suppl. 1, 111–124.
- Ito, S., B. A. Megrey, M. J. Kishi, D. Mukai, Y. Kurita, Y. Ueno, and Y. Yamanaka (2007): On the interannual variability of the growth of Pacific saury (*Cololabis saira*): A simple 3-box model using NEMURO. FISH. *Ecol. Model.*, 202, 174–183.
- Ito, S., T. Okunishi, M. J. Kishi, and M. Wang (2013): Modelling ecological responses of Pacific saury (*Cololabis saira*) to future climate change and its uncertainty, *ICES J. Mar. Sci.*, **70**, 980–990.
- Ito, S., K. A. Rose, B. Megrey, J. Schweigert, D. Hay, F. E. Werner, and M. Noguchi Aita (2015): Geographic variation in Pacific herring growth in response to regime shifts in the North Pacific Ocean. *Prog. Oceanogr.*, 138, 331–347.
- Itoh, S., I. Yasuda, H. Nishikawa, H. Sasaki, and Y. Sasai (2009): Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (*Engraulis japonicus*) and Japanese sardine (*Sardinops melanostictus*) in the western North Pacific estimated via numerical particle-tracking experiments. *Fish. Oceanogr.*, 18, 118–133.
- 亀澤泰子・東屋知範・永沢亨・岸道郎(2007): 生物エネルギーモデルを用 いた日本系サケ(Oncorhynchus keta)の成長に影響を及ぼす環境因子 の解,水産海洋研究, 71, 87-95.
- Kamimura, Y., M. Takahashi, N. Yamashita, C. Watanabe, and A. Kawabata (2015): Larval and juvenile growth of chub mackerel *Scomber japonicus* in relation to recruitment in the western North Pacific. *Fish. Sci.*, 81, 505-513.
- Kawasaki, K. (1983): Why do some pelagic fishes have wide fluctuations in their numbers? *FAO Fish. Rep.*, **291**, 1065-1080.
- Kim, S., J. R. O'Neil, C. Hillaire-Marcel, and A. Mucci (2007): Oxygen isotope fraction between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. *Geochim. Cosmochim. Acta*, 71, 4704-4715.
- Kishi M. J., M. Kashiwai, D. M. Ware, B. A. Megrey, D. L. Eslinger, F. E. Werner, M. N. Aita, T. Azumaya, M. Fujii, S. Hashimoto, D. Huang, H. Iizumi, Y. Ishida, S. Kang, G. A. Kantakov, H. Kim, K. Komatsu, V. V. Navrotsky, S. L. Smith, K. Tadokoro, A. Tsuda, O. Yamamura, Y. Yamanaka, K. Yokouchi, N. Yoshie, J. Zhang, Y. I. Zuenko, and V. I. Zvalinsy (2007): NEMURO-a lower trophic level model for the North Pacific marine ecosystem. *Ecol. Model.*, 202, 12–25.
- Kishi, M. J., K. Nakajima, M. Fujii, and T. Hashioka (2009): Environmental factors which affect growth of Japanese common squid, *Todarodes pacificus*, analyzed by a bioenergetics model coupled with a lower trophic ecosystem model. J. Mar. Sys., 78, 278–287.
- Kitagawa, T., T. Ishimura, R. Uozato, K. Shirai, Y. Amano, A. Shinoda, T. Otake, U. Tsunogai, and S. Kimura (2013): Otolith δ¹⁸O of Pacific Bluefin tuna *Thunnus orientalis* as an indicator of ambient water temperature. *Mar. Ecol. Prog. Ser.*, **481**, 199–209.
- Kitagawa, T., S. Kimura, H. Nakata, H. Yamada, A. Nitta, Y. Sasaki, and H. Sasaki (2009): Immature Pacific bluefin tuna, *Thunnus orientalis*, utilizes cold waters in the Subarctic Frontal Zone for trans-Pacific mi-

gration. Environ. Biol. Fish., 84, 193-196.

- Legrande, A., and G. A. Schmidt (2006): Global gridded data set of the oxygen isotopic composition in seawater. *Geophys. Res. Lett.*, 33, L12604.
- Mantua, N., S. Hare, Y. Zhang, J. Wallace, and R. Francis (1997): A Pacific interdecadal climate oscillation with impacts on salmon production. *Bull. Am. Meteorol. Soc.*, 78, 1069–1079.
- Miller, T. J., L. B. Crowder, J. A. Rice, and E. A. Marschall (1988): Larval size and recruitment mechanisms in fishes; toward a conceptual framework. *Can. J. Fish. Aquat. Sci.*, 45, 1657–1670.
- Nishikawa, H., and I. Yasuda (2008): Japanese sardine (Sardinops melanostictus) mortality in relation to the winter mixed layer depth in the Kuroshio Extension region. Fish. Oceanogr., 17, 411–420.
- Nishikawa, H., I. Yasuda, and S. Itoh (2011): Impact of winter-to-spring environmental variability along the Kuroshio jet on the recruitment of Japanese sardine (*Sardinops melanostictus*). *Fish. Oceanogr.*, 20, 570–582.
- Nishikawa, H., I. Yasuda, K. Komatsu, H. Sasaki, Y. Sasai, T. Setou, and M. Shimizu (2013): Winter mixed layer depth and spring bloom along the Kuroshio front: implications for feeding environment and recruitment of Japanese sardine. *Mar. Ecol. Prog. Ser.*, 487, 217–229.
- Noto, M., and Yasuda, I. (1999): Population decline of the Japanese sardine, *Sardinops melanostictus*, in relation to sea surface temperature in the Kuroshio Extension. *Can. J. Fish. Aquat. Sci.*, **56**, 973–983.
- Okunishi, T., S. Ito, D. Ambe, A. Takasuka, T. Kameda, K. Tadokoro, T. Setou, K. Komatsu, A. Kawabata, H. Kubota, T. Ichikawa, H. Sugisaki, T. Hashioka, Y. Yamanaka, N. Yoshie, and T. Watanabe (2012): A modeling approach to evaluate growth and movement for recruitment success of Japanese sardine (*Sardinops melanostictus*) in the western Pacific. *Fish. Oceanogr.*, 21, 44–57.
- Okunishi, T., Y. Yamanaka, and S. Ito (2009): A simulation model for Japanese sardine (*Sardinops melanostictus*) migrations in the western North Pacific. *Ecol. Model.*, 220, 462–479.
- Osafune, S., and I. Yasuda (2006): Bidecadal variability in the intermediate waters of the northwestern subarctic Pacific and the Okhotsk Sea in relation to 18.6-year period nodal tidal cycle. J. Geophys. Res., 111, C05007, doi:10.1029/2005JC003277.
- Politikos, D. V., G. Triantafyllou, G. Petihakis, K. Tsiaras, S. Somarakis, S. Ito, and B. A. Megrey (2011): Application of a bioenergetics growth model for European anchovy (*Engraulis encrasicolus*) linked with a lower trophic level ecosystem model. *Hydrobiol.*, 670, 141–163.
- Roemmich, D., and J. McGowan (1995): Climate warming and the decline of zooplankton in the California Current. *Science*, 267, 1324–1326.
- Sakamoto, T. (2016): Reproducing migration history of Japanese sardine using otolith δ¹⁸O and a data assimilation model. Master thesis, University of Tokyo, 89 pp.
- Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma (2008): An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator, p. 157–185. In *High Resolution Numerical Modelling of the Atmosphere and Ocean*, edited by K. Hamilton and W. Ohfuchi, Springer, New York.
- Shida, O., Y. Mihara, T. Mutoh, and K. Miyashita (2014): Interannual changes in the timing of walleye pollock spawning migration and their impacts on the gillnet fishery in the southwestern Pacific coast of Hokkaido, Donan area, Japan. *Fish. Sci.*, 80, 173–179.

- Sumata, H., T. Hashioka, T. Suzuki, N. Yoshie, T. Okunishi, M. N. Aita, T. T. Sakamoto, A. Ishida, N. Okada, and Y. Yamanaka (2010): Effect of eddy transport on the nutrient supply into the euphotic zone simulated in an eddy-permitting ocean ecosystem model. J. Mar. Sys., 83, 67 –87.
- Takahashi, M., Y. Watanabe, A. Yatsu, and H. Nishida (2009): Contrasting responses in larval and juvenile growth to a climate-ocean regime shift between anchovy and sardine. *Can. J. Fish. Aquat. Sci.*, 66, 972–982.
- Takasuka, A., I. Aoki, and I. Mitani (2003): Evidence of growth-selective predation on larval Japanese anchovy *Engraulis japonicus* in Sagami Bay. *Mar. Ecol. Prog. Ser.*, 252, 223–238.
- Takasuka A., Y. Oozeki, and I. Aoki (2007): Optical growth temperature hypothesis: Why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? *Can. J. Fish. Aquat. Sci.*, 64, 768 -776.
- Takasuka, A., Y. Oozeki, and H. Kubota (2008): Multi-species regime shifts reflected in spawning temperature optima of small pelagic fish in the western North Pacific. *Mar. Ecol. Prog. Ser.*, 360, 211–217.
- Wang, Y., W. Hao, and M. J. Kishi (2013): Coupling of an individual-based model of anchovy with lower trophic level and hydrodynamic models. J. Ocean Univ. China, 12, 45–52.
- 横内一樹・天野洋典・石村豊穂・白井厚太朗 (2017): 耳石の元素・同位体 比分析による回遊生態研究,水産海洋研究, 81, 189-202.

A review of issues on elucidation of climate variability impacts on living marine resources and future perspectives

Shin-ichi Ito¹*, Tetsuichiro Funamoto², Osamu Shida³, Yasuhiro Kamimura⁴, Motomitsu Takahashi⁵, Kotaro Shirai¹, Tomihiko Higuchi¹, Kosei Komatsu¹, Takaaki Yokoi¹, Tasuya Sakamoto¹, Chenying Guo¹, and Toyoho Ishimura⁶

Abstract

Various studies have been conducted to elucidate the climate variability impacts on living marine resources. Larval and juvenile stages are critical periods for the recruitment of living marine resources. However, limitations of observation methods for directly investigating the environments that larvae and juveniles experienced have been obstacles to our understanding. We reviewed the previous studies on climate variability impacts on living marine resources and discussed how reconstruction of environmental histories of larvae and juveniles is important for our understanding of climate variability impacts on living marine resources. We proposed a new, integrated method to reconstruct environmental histories of larvae and juveniles using otolith oxygen stable isotope analyses and fish growth-migration models. Together with the growth estimated from otolith daily increments, it is possible to elucidate climate impacts on larval and juvenile growth through environmental histories of larvae and juveniles using their realistic migration routes.

Key words : otolith oxygen stable isotope ratio, living marine resources fluctuation, fish growthmigration model, reconstruction of experienced environments

> (Corresponding author's e-mail address : goito@aori.u-tokyo.ac.jp) (Received 10 November 2016 ; accepted 13 May 2017) (Copyright by the Oceanographic Society of Japan, 2018)

¹ Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan

² Hokkaido National Fisheries Research Institute, Fisheries Research and Education Agency, 116 Katsurakoi, Kushiro, Hokkaido 085– 0802, Japan

³ Central Fisheries Research Institute, Hokkaido Research Organization, 238 Hamanakacho, Yoichi, Hokkaido 046-8555, Japan

⁴ National Research Institute for Fisheries Science, Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan

⁵ Seikai National Fisheries Research Institute, Fisheries Research and Education Agency, 1551-8 Tairamachi, Nagasaki, Nagasaki 851 -2213, Japan

⁶ National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki 312-8508, Japan

Corresponding author : Shin-ichi Ito TEL : +81471366240 FAX : +81471366247 e-mail : goito@aori.u-tokyo.ac.jp