二酸化炭素回収貯留技術に関わる
ロンドン条約の改定についての解説ならびに
第28回ロンドン条約締約国会合および
第1回ロンドン条約1996年議定書締約国会合報告*
鈴村 昌弘†

要 旨
第28回ロンドン条約締約国会合および第1回ロンドン条約1996年議定書締約国会合が2006年10月30日から11月3日にロンドンにおいて開催された。本会合はロンドン条約の枠組みにおいて廃棄物の海洋投棄を原則禁止した1996年議定書の国際発効後に開催される最初の締約国会合である。
また、従来の枠組みでは認められていなかった二酸化炭素の海底下地層貯留に関する改訂案についてもこの会合において議論された。ロンドン条約およびロンドン条約1996年議定書は海洋に直接関わり重要な国際条約であるにも拘らず、その詳細は日本の海洋研究者において十分に認知されているとは言い難い。本稿では、ロンドン条約について特に二酸化炭素の回収貯留技術に関連する部分に重点を置いて説明するとともに上記会合への出席報告を行う。

1. はじめに
二酸化炭素 (CO2) 回収貯留技術 (Carbon Dioxide Capture and Storage: CCS) とは、エネルギー産業の再生可能エネルギーの利用などと並んで重要な地球温暖化対策の一つに挙げられる。CCSについては、IPCCによる「二酸化炭素の回収・貯留に関する特別報告書」(IPCC, 2005) が公開されて以来、国連気候変動枠組み条約締約国会合 (COP), 京都議定書締約国会合 (COP/MOP) および科学および技術の助言に関する特別機関 (SBSTA) 等においても議論が進行し、また本年度 IPCC で採択された「2006年 IPCC 温暖化ガス排出インベントリー ガイドライン」等で CO2 の地中貯留技術が新たな項目として挙げられている (IPCC, 2006)。

独立行政法人 産業技術総合研究所 (以下、産総研) では、環境・エネルギーに関連する三つの研究ユニット (エネルギー技術研究部門、環境管理技術研究部門、地質資源環境研究部門) において、CCS の普及促進に関する国際連携調査・研究を進めている。当該研究内容で、1) 国内外関係機関における CCS の普及促進に関する調査および 2) CCS の法的取扱に関する課題整理を目的としている。前者においては、CCS の基本情報として IPCC の特別報告書および IEA/GHG(国際エネルギー機関温暖化ガス R&D プログラム) 主催の GHGT-8(第8回温暖化ガス制御技術国際会議) における議論の調査および CCS のクリーン開発メカニズム (Clean Development Mechanism: CDM)、先進国が途上国において共同で温暖化対策プロジェクトを行う、その結果として得られた温室効果ガスの吸収分あるいは削減分を先進国がクレジットとして獲得する仕組み) への適用促進に関わる議論の解釈・分析を行なっている。また 2) においては、CO2
表1 ロンドン条約附属書I 投棄禁止物質リスト（抜粋）

- 有機ハロゲン化合物
- 水銀および水銀化合物
- カドミウムおよびカドミウム化合物
- 難分解性プラスチックおよびその他の難分解性合成物質
- 原油、重油、重ディーゼル油、潤滑油および作動油並びにこれらの油のうちいずれかのものを含有する混合物
- 放射性廃棄物その他の放射性物質
- 形状を問わず生物兵器および化学兵器のために生産された物質
- 放射性廃棄物その他の放射性物質を除く、海洋の物理、化学、および生物的過程において速やかに無害化される物質については本附属書の規定を適用しない。ただし、i) 食用海洋生物の味を損なう物質、ii) 人および家畜の健康を損なう物質、についてはこの限りでない。
- 産業廃棄物および下水汚泥の海洋における投棄は禁止する。
- 産業廃棄物（1996年1月1日から）。なお、以下のものについては適用しない。
 1. 蒸蒸物
 2. 下水汚泥
 3. 魚類残さ又は魚類の産業上の加工作業によって生ずる有機物
 4. 船舶およびプラットフォームその他の人工海洋構築物
 5. 化学的成分が海洋環境中に放出されるおそれのない、污染されていない不活性な地質学的物質（ inert geological materials）
 6. 天然に由来する汚染されていない有機物質

の海底下地層貯留に関わるロンドン条約 1996年議定書 (96年議定書) の改訂と IPCC 2006改正ガイドラインについて情報収集と分析を実施している。このうち 96年議定書の改訂については CCSによる海洋の直接利用に関わるものであり、日本海洋学会会員各位においても興味のある内容と思われる。本稿では、まずロンドン条約および96年議定書の概要と CCSに関連した96年議定書の改正に関わる動きについて解説し、あわせて2006年10月30日から11月3日にかけて開催された「第28回ロンドン条約締約国会合および第1回ロンドン条約 1996年議定書締約国会合」の報告を行なう。

2. 条約の概要

2.1. ロンドン条約 (LC: The London Convention 1972)

正式名称は「1972年の廃棄物その他の物の投棄による海洋汚染の防止に関する条約 (Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972)」であり、廃棄物の投棄による海洋の汚染を防止することを目的とする。1972年11月に採択され、1975年8月に国際発効している。2006年9月30日時点において81か国が締約している。わが国は1973年に署名し、1980年11月に国内において発効した。国際的にはこの条約を受けけて「廃棄物の処理および清掃に関する法律」および「海洋汚染等および海上災害の防止に関する法律（海洋汚染防止法）」に基づく措置がとられてきた。本条約は、本文と三つの附属書および附書からなり、附属書において投棄禁止物質（附属書I）、投棄に特別許可を必要とする物質（附属書II）、特別許可又は一般許可の仮給基準を定める際の考慮事項（附属書III）を定めている。その後、ロンドン条約の枠組みにおいて、いわゆる「環境保護に対する予防的措置」の適用の合意を受けて附属書IおよびIIが改正され、1996年1月1日より廃棄物の海洋投棄は原則禁止となった。表1に附属書Iに挙げられている投棄禁止物質のリストを掲載している。

なお、この条約において「投棄」については第3条の1により、
1) 海洋において廃棄物その他の物を船舶、航空機又はプラットフォームその他の人工海洋構築物から故意に処分すること。
2) 海洋において船舶、航空機又はプラットフォームその他の人工海洋構築物を故意に処分すること。
2.2. 96年議定書（L.P. the 1996 Protocol to the London Convention 1972）

96年議定書の最大の特徴は「リバース・リスト方式」の導入である。上述したようにロンドン条約では附属書により「投棄しているわけではない」のリストが示されているが、それ以外の物質について適切な措置を講じることによって「海洋投棄を行なうため」の条約と言える。一方、96年議定書では海洋投棄を原則禁止としており、「海洋投棄を検討できる」という条件に基づく附属書1(表2)に定められている。そのほか、96年議定書が定める主な内容として、海洋焼却の禁止、予防的取組みおよび汚染者負担の原則および内水適用または内定での効果的措置の採用が挙げられる。また、附属書1(表3)は汚染物に関する影響評価の枠組み（Waste Assessment Framework, WAF と呼ばれる）であり、附属書1に掲げる廃棄物の投棄に際しては附属書1に基づく許可を必要とし、その遵守義務を伴う。各種の廃棄物の海洋投棄には、もともと廃棄物の削減努力や海洋投棄以外の適切な処分方法の検討の有無から、投棄サイトの選定基準、潜在的な環境影響評価の実施等に関する一連の厳格な管理と評価等が求められる。各国の規制当局はその評価に基づいて有効な許可を発給することがWAFにおいて明確化されている。

96年議定書ではWAFの実行上ガイダンスとして、別途、一般WAG（General Waste Assessment Guidelines）と品目WAG（Specific Waste Assessment Guidelines）が定められている。一般WAGはWAFと対応させ、その文脈を用いつつ、それに追加する形式で制定されている。具体的な事項として、投棄サイトの選定に必要となる情報、潜在的な環境影響を検討する際の指針、モニタリング実施時の指針、許可発給時の市民参加、審査主体の考慮事項などが挙げられている。一般WAGは96年議定書締約国における条項を通じた国内制度の構築を支援する意図を持って作成されている。ただしWAGそのものは96年議定書の一部ではないため、WAGの使用と言われている通りの制度を構築する義務はない。品目WAGはリバースリスト（附属書1）に記載された7品目それぞれに関して一般WAGに対して策定され、各品目の特性を踏まえて一般WAGへの特記事項付加や内容の一部削除、置き換え等がなされている。附属書2のWAFに沿った廃棄物投棄の実行手続きについて、一般WAGで提示されているフレーチャートを和訳したもの図1に示した。

なお、ロンドン条約および96年議定書の文書や関連情報は同議定書のウェブサイトにて公開可能である。

3. CCSと96年議定書の改定

CO₂の海洋隔離技術は海洋という場を直接利用するCCSとして検討され、CO₂の貯留ポテンシャルが極めて大きいことから有望な温暖化対策技術オプションとして期待されている。
表 2. 96年緊定書附属書（抜粋）海洋投棄を検討できる物質リスト。

- 渔滓物
- 下水汚泥
- 魚類残さ又は魚類の産業上の加工作業によって生ずる物質
- 船舶およびプラットフォームその他の人工海洋構造物
- 不活性な無機性の地質学的物質
- 天然に由来する有機物
- 主に鉄、鋼、コンクリートおよび同様に有害であるが物理的影響が懸念される物質
 （ただし海洋投棄以外に実行可能な処分方法が無い離島などに限定される）

表 3. 96年緊定書附属書（抜粋）。

一般規定 (General) :
ある条件下で海洋投棄を認めるためには、投棄の必要性を軽減するための更なる試みを実施する
という本附属書における義務を免除するものではない。

廃棄物の発生防止のための徹底的な審査・検討 (Waste Prevention Audit) :
海洋投棄に代わる処分方法の検討を行い最初の段階として、廃棄物の発生の軽減・防止技術
に関わる戦略が確保されていること。

廃棄物管理の選択肢の検討 (Consideration of Waste Management Options) :
リサイクル、無害化、陸上、大気処分および水域への処分についても検討されていること。

化学的・物理的および生物学特性 (Chemical Physical and Biological Properties) :
投棄に変わる処分の検討および投棄できるかどうかの検討を行うために不可欠な廃棄物の特性
について詳細に記載されていること。この記載が不十分なことにより人的健康および環境への潜在
的な影響について適切な評価ができないような場合には、当該廃棄物を投棄してはならない。

行動基準 (Action List) :
各締約国は、申請のあった廃棄物に対して人の健康および海洋環境に対する潜在的影響に基づい
た審査の仕組みを示す国の行動計画を作成すること。

投棄サイトの選定 (Dumping-Site Selection) :
候補海域の物理、化学、生物的特性、物質フクラス、経済的実行可能性等、投棄場所を選択
するための情報が提供されていること。

潜在的影響の評価 (Assessment of Potential Effects) :
各処分方法における環境への潜在的な影響評価は、予備される結果に関する簡潔な記述、即ち
「影響仮説」を立案することにより、比較して評価・検討されるべきである。

監視・モニタリング (Monitoring) :
投棄許可条件の遵守に関する監視および環境影響評価のためのモニタリング計画が明確に定め
られていること。

許可および許可基準 (Permit and Permit Conditions) :
投棄の許可は全ての潜在的影響の評価が完了し、監視計画の決定がなされた場合においてのみ
発給されるべきである。許可の発給に当たっては、環境の混乱・損傷が可能な限り最小化され
利益が最大化されることを確保すべきである。なお、許可は定期的に見直されるべきである。
図1. 96年議定書附属書II（WAF）に基づく海洋投棄の実行手続き

海洋隔離技術はその隔離場所・方式により、中深層への溶解・隔離、深海底貯留および海底下地層貯留に区別される。ここではまず、現時点でのロンドン条約において議論の対象となっている海底下地層貯留について簡単に解説する。海底下地層貯留はIPCCの報告書においてCO₂の地中貯留技術の一つとして解説されており、海底下の帯水層中にCO₂ガスを圧入し、塩水に溶解・不動化させる技術である。圧入されたCO₂は鉱物同化（おわんを伏せた状態の構造）を持つ不透水層（キャップロック）による物理的なトラップや、イオン化して地層内の鉱物と地化学反応を起こし鉱物化する鉱物トラップなどのメカニズムにより長期間にわたり貯留される。海外においては、ノルウェーのSleipner CO₂ Geologichal Storage（1996年〜）やオーストラリアのGorgon Project（2008年〜）など、天然ガスの隣伴CO₂（化石燃料燃焼によるCO₂ではなく）を海床の帯水層に圧入する大規模な商業化レベルのプロジェクトが進められている。Sleipnerプロジェクトを例にとると、北海の水深約100mの海底下、深度1,000mの帯水層に年間およそ100万トンのCO₂を圧入している。また、日本の近海においては水深200m以下、海底下1,000m以深の未開拓帯水層に関するCO₂貯留ポテンシャル
表 4. ロンドン条約および96年議定書におけるCCSに関連する議論の流れ。

<table>
<thead>
<tr>
<th>年月</th>
<th>会合</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999.10</td>
<td>LC21</td>
<td>事務局より“Ocean Storage of CO₂”という文書が提出される</td>
</tr>
<tr>
<td>2006.11</td>
<td>LC26</td>
<td>英国より文書“Mitigating the environmental impacts on the oceans of climate change: Carbon capture and sequestration in the marine environment”が提出され、CO₂海洋隔離とロンドン条約・96年議定書の関係について議論するWGが設置されることになった。当面は海底下地層貯留の議論に限定し、以降のLCおよびSGにおいて、海底下地層貯留の問題を重要議題として取り扱うことおよび技術的要素（海底下地層貯留のリスク、ベネフィット、知識ギャップ）と法的要素（96年議定書附属書Ⅰの改正）について検討することが予定された。</td>
</tr>
<tr>
<td>2005.5</td>
<td>セミナー SG28</td>
<td>英国主催によるCS-SSGFに関するセミナーがSG直前に開催された。</td>
</tr>
<tr>
<td>2005.10</td>
<td>LC27</td>
<td>英国からの報告“Sequestration of CO₂ in sub-seabed geological structures: Compatibility with the London Convention and Protocol: Legal Issues”に基づきCO₂海底下地層貯留の法的文書について議論され、以下の点などについての合意が得られた； - 海洋の酸性化の防止への寄与、海洋循環などへの潜在的影響の緩和という海洋環境保全への便益があること - 長期間の効率的貯留技術、偏在の緩和・修復技術、モニタリング手法について、様々な採択と経験があること - 海洋環境への影響監視方法の選択にギャップがあること - 異なるリスクを評価・管理するために適切な評価枠組みの開発が必要であること</td>
</tr>
<tr>
<td>2006.3</td>
<td></td>
<td>96年議定書が国際発効し、締約国の内96年議定書および附属書の改正が可能となった</td>
</tr>
<tr>
<td>2006.4</td>
<td>技術的WG LC27</td>
<td>会合で合意されたTORを受けて議論がなされ、「リスク評価と管理の枠組み」 "Risk Assessment and Management Framework for CO₂ Sequestration in Sub-Seaed Geological Structures”が取りまとめられた。さらにCO₂WAG策定の取り組みが合意された。</td>
</tr>
<tr>
<td></td>
<td>法的WG</td>
<td>技術的WGの議論も踏まえた上で、CS-SSGFを96年議定書附属書Ⅰに盛り込むことが合意され、その改定案“Possible Amendment to Annex 1 to the London Protocol”が提出された。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4月中にほぼ同様の文書で96年議定書締約国である国などから正式提案→10月の第1回96年議定書締約国会合で採択可能</td>
</tr>
<tr>
<td>2006.6</td>
<td>SG29</td>
<td>技術的WGの結果が報告され、その内容をSGとして受理、承認した。SG30に向けてCO₂WAGを取り纏めることが合意された。</td>
</tr>
</tbody>
</table>

* EOR/EGR: 石油・天然ガス増進回収技術 (Enhanced Oil Recovery/Enhanced Gas Recovery)
ルの見直しを試みている例もある（NEDO/RITE, 2001）。

海底下1,000 mに深くとどまることで漸減の産業活動から発生した「リバース リストに記載されていない CO2 を海域に投入する」という点においては、海底下地層貯留はロンドン条約に大きく関わる問題である。ロンドン条約では1990年代後半にCO2 の海洋貯留が取り上げられ、海洋貯留が気候変動対策に大きな可能性を提供するという認識のもと、2004年10月の第26回締約国会合（LCLC）において海洋環境におけるCO2 貯留とロンドン条約および96年議定書の関係について検討するワーキンググループ（WG）が設置された。議論の結果、以下に締約国会合およびロンドン条約定例科学者会合（Science Group Meeting; SG, 通称、ロンドン条約では締約国会合と科学者会合の2回の国際会合を開催している）の重要議題としてCO2 の海底下地層貯留の問題を取り扱うことが合意された（なお上記のWGでは当面は海底下地層貯留の議論に限定するが将来的には海洋への直接貯留を含めた問題を扱う可能性があるとされた）。この議論を受け、海底下地層貯留のリスク、ベネフィット、知識ギャップなどの技術的面と海洋下地層貯留がロンドン条約および96年議定書に照らしてどのように解釈されるかという技術的事項（96年議定書附属書Iの改訂を含む）を検討することになった。ロンドン条約および96年議定書におけるCCSに関する議論の経緯について表4に示している。

なお、ロンドン条約においては海底下地層貯留に対して当初「CS-SSG (CO2 Sequestration in Sub-Seabed Geological Structures)”という言葉が用いられていたが、前述の技術的事項WGと海底下地層貯留は「CS-SSGF（CO2 Storage in Sub-Seabed Geological Formation)”が用いられ、96年議定書の改訂においても後者は採用されていることから、本報告でも以降はCS-SSGFを略号として用いる。

2006年2月、予想以上の早期に96年議定書の発効要件が満たされ同年3月に国際発効したが、その後4月にはLCLCにおける合意を受けてCS-SSGFに関する技術的事項WG（Technical WG）が設立された。ロンドン条約におけるCS-SSGFに対する考え方を紹介するために、ここでは技術的事項WGにおける結論を詳細する。

CS-SSGFは酸化的な海の海洋環境におけるに新たな影響を緩和するためのCO2 排放出削減の手段として、既存の技術をもとに実現可能なオプションと考えられる。

CS-SSGFは大気へのCO2 排放出削減に寄与しうるものであり、結果として海洋へのCO2 の吸収を抑制し、海水の腐敗度およびpH、感受性の強い海洋生態系や栄養塩の利用可能性・循環過程に及ぼす影響を緩和しうる。

したがって、CS-SSGFにより引き起こされる潜在的なリスクは主に局所なものであり、貯留場の近傍の海洋環境への影響を含む。CS-SSGFは締約国間が温室効果ガス排出削減の手段として検討できる廃棄物管理オプションの一つである。

隔離されるCO2流（CO2 stream）は起源物質に由来する他の成分を含む可能性があり、原料やCO2の回収・液化方法により組み換えられる。しかし、これらの中は適当な方法で処理されなければならないことを強調しなければならない。

CS-SSGFの時間スケール、従来の海洋投棄に対してより大きな面積を要することおよびCO2の特性を勘案すると、CO2の漏洩に関する長期的な監視やその緩和措置についての検討はロンドン条約および96年議定書によっても重要な活動・役割である。

CS-SSGFは膨大なポテンシャルを有しており、油田、ガス田および水深層は安全かつ長期の隔離に適した最大の貯留場である。CO2の恒久的な保存を目的としており、地層中における様々なトラップ機構によってさらに長期にわたり確実な保存が可能となる場合もある。

貯留場としての適正に影響を及ぼす特性に関しては場ごとに大きく異なるであろうから、CS-SSGFの実施場所選定にあたっては、貯留容量と圧入の容易さ、貯留の安全性、周辺地層の通性、潜在的な移行・漏洩経路、漏洩したCO2の海洋生物および人の健康に対する潜在的な影響について検討することが重要である。

貯留場からのCO2の移行や漏洩を検討するための利用可能な監視手法は存在する。関連する時間軸が非常に長いうちの適切な管理・対応の可能性に課題を投げかける。

CS-SSGFの目的とすることは「無漏洩」であるが、CO2が海洋環境にまで到達する可能性があること、およびもたらされる様々な種類・規模の影響（予測）に基づいて、潜在的な漏洩に対する緩和措置を講じることが必要である。

CS-SSGFに対する「リスク評価と管理の枠組み」は、海洋環境に対するサポートに対するリスクに関して有益かつ重要な情報を提供し、不確定性に対処する政策を構築し、残されたリスクを受容可能なレベルまで引き下げることが可能である。

以上の結論に基づき技術的事項WGでは、CS-SSGFを検討する上の技術的事項および「リスク評価と管理の枠組み”“Risk Assessment and Management Framework
第28回ロンドン条約締約国会合および第1回96年議定書締約国会合報告

日本の96年議定書未批准であるため、96年議定書会合としては傍聴国の取り扱いとなった。96年議定書締約国として17か国（オーストラリア、ベルギー、カナダ、中国、デンマーク、エジプト、フランス、ドイツ、メキシコ、ニュージーランド、ノルウェー、チュニジア、南アフリカ、スペイン、スウェーデン、英国、パナマ）のロンドン条約批准・96年議定書未批准国として日本を含む17か国（そのうちのイタリアは11月12日に正式に96年議定書の批准国になりすることが確認された）が出席し、その他に批准していない国やOECD、IEA、UNEPといった関連国際機関およびグリーンピースなどNGOの傍聴参加があった。

4.2. 会議の運営

ロンドン条約の現議長であるV. Escobar Paredes（スペイン）が96年議定書締約国会合の議長として選出された。ロンドン条約と96年議定書は異なるものであり、SGなどの補助機関の設置やTOR（Terms of Reference）などの採択をそれぞれ別個に行うならずについて議論がなされた。補助機関については同一の選に開催し、TORについては共通することとされ、この方針は必要に応じて修正することができるとして合意が得られた。また、現在のSGの議長が96年議定書未批准国である米国から選出されているといった点についての指摘・議論もあり、当面は一つの条約間における調整課題について暫定的な取り扱いがなされるという状況となった。出席した96年議定書未批准国においては、概ね批准に向けた国内手続きが進んでいるとのことであった。

4.3. CS-SSGFの技術的課題に関する議論

議長提案により、まず技術的課題に関する報告と議論を行なう意向が示された。SG議長から、これまでの経緯、2006年4月の技術的課題WGおよび6月のSG29におけるCS-SSGFの議論について報告がなされた。あわせて、今後の直前・2006年11月25日～27日に開催されたOSPAR（the OSPAR Convention; the Convention for the Protection of the Marine Environment of the North-East Atlantic）ワークショップについてオランダから報告があった。OSPARではロンドン条約とは別にCS-SSGFを取り扱っているが、ロンドン条約との整合性を保ちながら最終的にはOSPARの目的に沿ったリスク評価・管理の枠組みを完成させる予定であるとのことであった。

議論の中で、海洋環境への影響といった問題を前に、CS-SSGFの「CCSとしての行為」自体に対して、そのほかのCO2排出削減対策が競ってならという懸念が発表された。
リカ、ドイツ、リベリア、グリーンピースなどから表明され
た。この点に関して、CCSはロンドン条約の枠組みのみに
おける動きではなく国際的な潮流であることについての一応
の合意が得られた。

国によってRAFやCO2WAG案などの文章の位置付け
や取り扱いに対する考え方に差異があり混乱が見られた。
そのため初日の議論終了後に議長の提案による非公式のグルー
プ（Informal Contact Group）によってこの問題が議論され、
このグループからプレナリー会合に対して、
1) SG29によって合意されたCS-SSGFの技術的事項WG
の結論について普及（note）すること。
2) RAFを裏書き（endorse）し、CO2WAGの策定に当たっ
てRAFを用いるよう推奨すること。
3) SGに対して、CO2WAGの策定と仕上げに対するTOR
を取りまとめる。
が求められた。翌日のプレナリー会合でこれらの提案につい
て合意が得られた。

4.4. CS-SSGFの法的事項に関する議論

4月に開催された法的事項WGの報告書"Report of the
Meeting of the CM Intersessional Legal and Related Issues
Working Group on CO2 Sequestration"について、レポート
を歓迎し採択に賛成するという意見がスウェーデン他数
か国から出された。しかし、南アフリカからレポートの採択
イコール96年議定書附属書Iの策定案の承認になってしま
うのではないかという懸念が表明された。これに対し議長提
案により、ここではレポート全体の意図におけるところを全般的
（general）に承認することとして、「Adopt（採択）」ではなく
「Approve（承認）」でとすることまで還沒だ。

4.5. 96年議定書附属書Iの改定

法的事項WGで取りまとめられ、4月にオーストラリア
他から正式に提出されたCS-SSGFをリバースリストに追加
するという附属書Iの改定案（附属書の承認案そのものと
同定案のための解議案）について説明がなされた。また、
スパインから同提案を支持する趣旨の提案文書について説明
があった。グリーンピースには隔離するCO2浚に含まれ
る残渣物の濃度を數字で示すべき（具体的には99.9％のCO2
で構成されていることを推奨）との提案文書が示され、英国、
スウェーデンおよびオーストラリアの共同文書として残渣物の
濃度に関しては柔軟な対応を必要とする旨の文書が提示され
た。議長は全出席国からコメントを求め、96年議定書加盟
国からは、ノルウェー、英國、サウジアラビア、スウェーデ
ン、ニュージーランド、カナダが改定を支持（英国およびサ
ウジアラビアからは特に強い支持が示された）、スウェーデ
ン、南アフリカを留意事項を含む支持、フランス、パナマ
は支持するが修正を要求、ドイツ、中国、デンマークは現時
点での改定を支持しないことを表明した。

またカナダからは、ガイドラインが現時点では不完全なこ
とについての懸念に対して、ガイドラインを充実させるべき
SGに対するTORを策定することと、変則物に対してはそ
の時点におけるBAT（Best Available Technology）を用い
ることによって対応可能ではないかという提案がなされた。
未批准国に対しても意見聴取がなされ、日本は改定支持の立
場を表明した。改定を懸念する要因の一つとしては、やはり
実行上のガイドラインとなるCO2WAGが完成していない
ことが取り上げられた。これらの発言を受け議長からは、
中国、CCSは気候変動緩和に対する重要な選択肢であること、
附属書1の改定自体に対応の意見はなかったこと、
という一定が合意されたとの見解を示した。しかし、いくつか
の国から示された懸念事項に対するために、議長はad
hocなWGを設置することを同時に提案し、プレナリー会
合と並行して別室において議論を進めることとなった。

4.6. CS-SSGF検討WG

このWGが目的とするところは、以下の4点である（後
に提出されるWG報告書にも記載された）。

1. SGに対するTOR案を作成し、96年議定書の枠組みに
おけるCO2WAGの策定を補助する。
2. プレナリー会合での意見を考慮し、オーストラリアに
よる96年議定書附属書I改定案のための解議案文書に
対する修正案を提案する。
3. 必要があればオーストラリア他の改定案そのものの修正
を検討する。
4. 以上の検討結果について、11月2日にプレナリー会合
に対して報告書を提出する。

WG議長にはカナダのIan Mathesonが指名され20か国
が参加した。まず、SGによるCO2WAG策定に対するTOR
案の取りまとめに向け議論が行われた。残念ながら、議論
の繰り返しへなどにより議事の進行は順調とは言えなかった。
特にドイツはCCSの推進を強く制御するパンフレットを会
場購入に用意し配布しており、議論の中でも多数の難題
を拡大してきた。即ち、隔離したCO2の海洋環境への許容
可能な濃度の数値化、overwhelminglyに代わる具体的数
値の設定、隔離した現在の地球規模での環境影響予測の実施
（localについては記載されている）など、現段階では事実上
不可能あるいは状況から明らかに同意を得ることが困難と思われる提案が繰り返された。また、唐突に「water column への海洋隔離は容認すべきでない」という文言を加える提案を行なったが、これに対しては日本、オーストラリアにより海洋隔離自体が今回の議論対象ではないとの指摘により盛り込まれることとなった。また、このWG設置に関するプレゼンテーションでの検討の際にすでに議長から釈を刺されておりにもかかわらず、「本WGにおいて96年議定書未批承国の意見は検討に値しない」と受け取るべき発言をし、たしなめられることとなった場面もあった。

WGの議論はほぼ丸2日かけて行なわれ、全体としては4日目となる木曜日（11月2日）の午後にプレゼンテーション会合に出席してWG報告書原案が報告された。TORの原案では、SGによるCO₂WAG策定に関する留意事項として、
○ 最新の利用可能な科学技術情報（best available scientific information）と前後のCS-SSGプロジェクトの中で得られる研究成果に基づいて更新。
○ 研究の実施に関する原則。
○ 腐敗物処理の選択肢（ヒエラルキー）
○ 处理物の濃度情報を含むCO₂流の化学、物理、生物特性。
○ 行動計画。
○ サイトの選定と特性解明（隔離地層と周辺海域、サイトの特性や特有のプロセス、可能性のある浸透経路など）。
○ 可能性のある浸透速度の変化に対応した影響評価。
○ 長期的な監視と環境に対する緩和・改善措置。
○ 許可の発給と発給条件。

取り上げるべき事項は、さらに、CO₂WAGの策定に当たってはこの締約国会合で裏書きされたRAFやIPCCの特別報告書などの知識を取り入れることとし、次回のSG（ロンドン条約としては第30回、96年議定書としては第1回）での完成と来年の締約国会合への起因に向けて取り組むことを目指し、会期間合会を開催することも併せて要請している。また、96年議定書附属書1の改定案のための決議文案においては、改訂案に消極的な加盟国の懸念に考慮し、
○ CCSは大気CO₂レベルを減少させるためのポートフォリオの一つであるとみなすこと。
○ CCSは重要かつ暫定的な対策であることを認識すること。
○ Low carbon energyのさらなる開発に期待すること（下記参照）。
○ CCSが他のCO₂発生削減対策に取って代わるものではないことを認識すること。
○ この決議文はCO₂の海底下層貯留に限定したものであることに留意すること。

○ 海底下地層貯留の実施に当たっては、海洋環境の保全が確実なものになるように制御することを強く求めること。

その他の文言を含む形で96年議定書附属書1の改定を承認するようプレゼンテーション会合に対して求めた。

この報告書を受けてプレゼンテーション会合で議論が行われ、TORに関しては特に反対者等も無く採択された。また決議文について、上記第3バルグラフに関してドイツの提案により、「Looking forward to...」から"Emphasizing the need to...「の文言修正が提案され、この修正を加えた上で採択された。附属書1の改訂案自体に対する修正は見られなかったため、改訂の是非について検討に入った。その結果、デンマーク（CO₂WAG完成前の改訂は適当ではない）、南アフリカ（検討の時間が必要、途上国が取るべき感情が懸念される）、ケニア（科学的検討がさらに必要）、中国（まだ不確定な技術であり来年の第2回締約国会合での採択を求める）の4か国は支持できないとした。南アフリカの懸念に対しては、サウジアラビア、パナマ、UNEPなどから「先進国の温室効果ガス削減に有効であり、途上国にとっても有益である」との意見が示された。議長は中国、デンマーク、南アフリカ代表と会外で非公式な話し合いを行なったが、合意に至ることは不可能であると判断された。最終的に投票による採択となり、賛成：オーストラリア、カナダ、フランス、ドイツ、メキシコ、ニュージーランド、ノルウェー、サウジアラビア、スペイン、スウェーデン、英国、パナマ（12か国）、留保：ベルギー、中国、デンマーク、エジプト、南アフリカ（5か国）となり、規定による改訂の条件を満たしたため、96年議定書はCS-SSGをリーバースリストに加える形で改定されることになった（表5に最終的な改訂文書を示した）規定により、附属書の改定内容は採択の100日目（2007年2月10日）に有効となる。なお、当該締約国会合の報告書の検討において、デンマークより"statement by Denmark"として「海洋隔離は許容されるべきではない」との趣旨を含む文章が記載されることになった。会期終了後、日本より事務局長に対して、デンマークのみの主張に過ぎないことが明確に分かる記述をするように申し入れを行なった。

5. 報告書所感

本会合の直後にケニア・ナイロビで開催されたCOP12・COP/MOP2では、CCSの取り扱いに関して非常に活発な討論がなされ、2013年以降の枠組みにおいてCCSをCDMの一環として実施することについて、COP/MOP4（2008年）に向けた作業の道筋が明らかに設定されるなど、今後さらにCCSに関連する科学的知見の集積が望まれるところである。
表 5. 採択された96年議定書附属書Ⅰの改定案文原

1.8 Carbon dioxide streams from carbon dioxide capture processes for sequestration

4 Carbon dioxide streams referred to in paragraph 1.8 may only be considered for dumping, if:

.1 disposal is into a sub-seabed geological formation, and;
.2 they consist overwhelmingly of carbon dioxide. They may contain incidental associated

substances derived from the source material and the capture and sequestration processes used, and;
.3 no wastes or other matter are added for the purpose of disposing of those wastes or other matter.

In paragraph 3, replace “1.7” with “1.8”, to take account of the new paragraph 1.8.

倫敦条約に関する経緯の調査や会合を傍聴して感じたこととしては、大気 CO₂濃度の上昇に関してはこれまで気候変動（暖化）との関連が中心であったが、今後の情勢として会合においても海洋酸性化を危惧する意見が非常に目立つようになっていた。CS-SSGFの実施にあたって、圧入した CO₂が海洋環境（海水）中に摂減した比較の影響予測の重要性が強く指摘されているが、大气からの CO₂収吸に伴う海洋表面の酸性化に関する研究と連携して知見数を蓄積してゆくことが重要であると思われる。また、表3に示した96年附属書Ⅱ（WAF）には、海域の化学、物理、生物的特性の把握、物質フロックス、環境影響評価あるいはモニタリングなど、むしろ見落された言葉が多く記載されている。96年議定書の発効と今回の改訂を受けて日本でも環境省を中心として国内手続きの整備が進められているが、廃棄物の海洋投棄に対する環境影響評価やCS-SSGFにおけるCO₂の潜在的な浸透の影響予測などに対して、われわれ海洋研究者の果たす役割は今後ますます重要になるであろう。さらに、ロンドン条約の枠組みにおいて現時点では取り扱われていないものの、CS-SSGF以外のCO₂海洋隔離技術については重要なCCSオプションとして国際的な検討が今後後進されていくと考えられる。海洋により直接的に関与するCCSとしてその動向に留意するとともに、実施の可能性を高めた研究の必要性を強く感じているところである。

謝辞

本稿に関わる調査は経済産業省委託研究「酸化炭素分離・酸素濃縮技術の普及方策に関する国際的動向調査」により実施したものである。執筆にあたり産総研寄尾匡弘氏には有益なご助言をいただいた。また日本エヌ・ユー・エス株式会社鈴木聡司氏と手摺智枝由美氏には会合報告の取りまとめにご協力いただいた。

文献

